
13 November 2018, ICSOC 2018, Honghzou, China

Schahram Dustdar

Distributed Systems Group

TU Wien

dsg.tuwien.ac.at

On Research Challenges in 
IoT Systems Engineering











Network Neutrality (NN)

All traffic on the Internet must be treated equally.



Network Neutrality is gone…



Understanding the context



What about NN and IoT?

Dustdar S. and Duarte, E.. (2018) Network Neutrality and its impact on Innovation, IEEE Internet Computing, 

Nov/Dec 2018
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Service Engineering Design Strategy

Definition of DIVIDE AND CONQUER

to make a group of people disagree and 
fight with one another so that they will not 
join together against one. His military 
strategy is to divide and conquer.



Smart City Example
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Marine Ecosystem: http://www.xbordercurrents.co.uk/wildlife/marine-ecosystem-2

Ecosystems: People, Systems, and Things
Complex system with networked 
dependencies and intrinsic 
adaptive behavior – has:

1. Robustness & Resilience 
mechanisms: achieving stability 
in the presence of disruption

2. Measures of health: diversity, 
population trends, other key 
indicators

3. Built-in coherence

4. Entropy-resistence



Ecosystems for IoT Systems



Perspectives on the IoT: Edge, Cloud, Internet



Cloud-centric perspective
Assumptions
• Cloud provides core services; Edge provides local proxies for the Cloud (offloading parts of the cloud’s 

workload)

Edge Computers
• play supportive role for the IoT services and applications

• Cloud computing-based IoT solutions use cloud servers for various purposes including massive computation, 
data storage, communication between IoT systems, and security/privacy

Missing

• In the network architecture, the cloud is also located at the network edge, not surrounded by the edge

• Computers at the edge do not always have to depend on the cloud; they can operate autonomously and 
collaborate with one another directly without the help of the cloud



Internet-centric perspective

Assumptions
• Internet is center of IoT architecture; Edge devices are gateways to the Internet (not the Cloud)

• Each LAN can be organized around edge devices autonomously

• Local devices do not depend on Cloud

Therefore
• Things belong to partitioned subsystems and LANs rather than to a centralized system directly

• The Cloud is connected to the Internet via the edge of the network

• Remote IoT systems can be connected directly via the Internet. Communications does not have to go via the 
Cloud

• The Edge can connect things to the Internet and disconnect traffic outside the LAN to protect things -> 
IoT system must be able to act autonomously



Edge perspectives



Cloud-IoT vs. Edge/Cloud hybrid IoT



Vertical vs. Horizontal Edge Architecture



Ecosystem “Society 5.0“ (Japan)

Toward realization of the new economy and society, Keidanren (Japan Business Federation), April 2016



Linear History? Ancient “Computers“

Stonehenge: A Neolithic 

Computer

Nature 202, 1258 - 1261 

(27 June 1964); 

doi:10.1038/2021258a0

Adam‘s Calender, 

Michael Tellinger



Collective mess....



“The scientists of today think 
deeply instead of clearly. 

One must be sane to think 
clearly, 
but one can think deeply and 
be quite insane.”

Nikola Tesla

https://www.goodreads.com/author/show/278.Nikola_Tesla


Marie Curie

"You cannot hope to build a better world 
without improving the individuals. 

To that end each of us must work for his own 
improvement, and at the same time share a 
general responsibility for all humanity, 

our particular duty being to aid those to whom 
we think we can be most useful." 
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Assumptions, Models, and Abstractions

• Co-evolution of Science & Technologies 

• Smart Cities as models of ecosystems: -> People, Things, and Systems

• Models as abstractions are useful (Platonic Forms)

• We lack a model for such an ecosystem

• From automation to creativity support

• Consciousness and creativity support -> lead to new (meta) models and 
understanding of technologies and science -> Architecture of Values  



Layers of Paradigms

• Not reductionist

• We have to create the abstractions and models we 
want based on our understanding of human and 
societal needs

• Ecosystems = Architecture, Structure + Dynamics

• New Paradigms: (1) Elastic Computing,
(2) Social Compute Units, (3) Osmotic Computing

• Emergent properties on higher levels with own 
properties



stretch when a force stresses them

shrink when the stress is removed

(Physics) The property of returning to an initial form or state 
following deformation

Paradigm 1: Elasticity (Resilience)

e.g.,  acquire new resources, reduce quality

e.g., release resources, increase quality



Elastic Computing > Scalability

Resource elasticity 
Software / human-based
computing elements,
multiple clouds

Quality elasticity
Non-functional parameters e.g., 
performance, quality of data,
service availability, human
trust

Costs & Benefit 
elasticity
rewards, incentives

Elasticity

Dustdar S., Guo Y., 

Satzger B., Truong H. 

(2012) Principles of Elastic 

Processes, IEEE Internet 

Computing, Volume: 

16, Issue: 6, Nov.-Dec. 

2012

http://www.infosys.tuwien.ac.at/Staff/sd/papers/Zeitschriftenartikel PrinciplesOfElasticProcesses SD.pdf
https://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=6355499


Specifying and controling elasticity

Basic primitives

Dustdar, S. et al.: Programming 

Directives for Elastic 

Computing. IEEE Internet 

Computing 16(6): 72-77 (2012) 

SYBL (Simple Yet Beautiful Language) for 
specifying elasticity requirements

SYBL-supported requirement levels

Cloud Service Level

Service Topology Level

Service Unit Level

Relationship Level

Programming/Code Level

Current SYBL implementation

in Java using Java annotations
@SYBLAnnotation(monitoring=„“,constraints=„“,strategies=„“)

in XML
<ProgrammingDirective><Constraints><Constraint

name=c1>...</Constraint></Constraints>...</ProgrammingDirective
>

as TOSCA Policies
<tosca:ServiceTemplate name="PilotCloudService">  <tosca:Policy

name="St1" policyType="SYBLStrategy">    St1:STRATEGY 
minimize(Cost) WHEN high(overallQuality)  </tosca:Policy>...



Specifying and controling elasticity of human-
based services

What if we need to 

“invoke“ humans?

#predictive maintanance analyzing chiller measurement
#SYBL.ServiceUnitLevel
Mon1 MONITORING accuracy = Quality.Accuracy
Cons1 CONSTRAINT accuracy < 0.7 
Str1 STRATEGY CASE Violated(Cons1): 
Notify(Incident.DEFAULT, ServiceUnitType.HBS)



High level elasticity control 
#SYBL.CloudServiceLevel
Cons1: CONSTRAINT responseTime < 5 ms 
Cons2: CONSTRAINT responseTime < 10 ms 
WHEN nbOfUsers > 10000
Str1: STRATEGY CASE fulfilled(Cons1) OR 
fulfilled(Cons2): minimize(cost)

#SYBL.ServiceUnitLevel
Str2: STRATEGY CASE ioCost < 3 Euro : 
maximize( dataFreshness )

#SYBL.CodeRegionLevel
Cons4: CONSTRAINT dataAccuracy>90% AND 
cost<4 Euro

Georgiana Copil, Daniel Moldovan, Hong-Linh Truong, Schahram Dustdar, "SYBL: an Extensible Language for Controlling Elasticity in Cloud 
Applications",  13th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid), May 14-16, 2013, Delft, Netherlands

Copil G., Moldovan D., Truong H.-L., Dustdar S. (2016). rSYBL: a Framework for Specifying and Controlling Cloud Services Elasticity. ACM
Transactions on Internet Technology



Elasticity Model for Cloud Services
Moldovan D., G. Copil,Truong H.-L., Dustdar S. (2013). MELA: 

Monitoring and Analyzing Elasticity of Cloud Service. CloudCom

2013

Elasticity space functions:  to determine if a service 
unit/service is in the “elasticity behavior”

Elasticity Pathway functions: to characterize the 
elasticity behavior from a general/particular view 

Elasticity Space



Paradigm 2: Social Compute Units (SCUs)

Dustdar S., Bhattacharya K. 
(2011). The Social Compute Unit, IEEE 
Internet Computing, Volume 15, Issue 
3; pp. 64 - 69.

Fernández P., Truong H.-L., Dustdar S., 
Ruiz-Cortés A. (2015). Programming 
Elasticity and Commitment in 
Dynamic Processes. IEEE Internet 
Computing, Volume 19, Number 2, 
pp. 68 - 74

http://www.infosys.tuwien.ac.at/Staff/sd/papers/Zeitschriftenartikel SD The Social Compute Unit.pdf
http://www.infosys.tuwien.ac.at/Staff/sd/papers/Zeitschriftenartikel L. Truong Programming Elasticity.pdf


Elastic SCU provisioning (Paradigms 1 and 2 together)

Elastic profile
SCU (pre-)runtime/static formation

Cloud APIs

Muhammad Z.C. Candra, Hong-Linh Truong, and Schahram

Dustdar, Provisioning Quality-aware Social Compute Units in 

the Cloud, ICSOC 2013.

Algorithms
 Ant Colony

Optimization
variants

 FCFS
 Greedy

SCU extension/reduction
 Task reassignment

based on trust, cost, 
availability

Mirela Riveni, Hong-Linh Truong, and Schahram

Dustdar, On the Elasticity of Social Compute Units, 

CAISE 2014



Paradigm 3: Osmotic Computing

 Dynamic management of 
(micro)services across cloud and 
edge datacenters 
 deployment, networking, and 

security, …

 providing reliable IoT support with 
specified levels of QoS. 

 In chemistry, “osmosis” represents the 
seamless diffusion of molecules from a 
higher to a lower concentration solution. 

Villari M., Fazio M., Dustdar S., Rana O., Ranjan R. (2016). Osmotic 

Computing: A New Paradigm for Edge/Cloud Integration. IEEE Cloud 

Computing, Volume 3, Issue 6, pp. 76-83

http://www.infosys.tuwien.ac.at/Staff/sd/papers/Zeitschriftenartikel_2016_SD_ Osmotic.pdf


IoT & Data Science – Research Challenges

Ranjan R., Rana O., Nepal S., Yousif M., 
James P., Wen Z., Barr S., Watson P., 
Jayaraman P. P., Georgakopoulos D., Villari
M., Fazio M., Garg S., Buyya R., Wang L., 
Zomaya A. Y., Dustdar S. (2018).
The Next Grand Challenges: Integrating 
the Internet of Things and Data Science,
IEEE Cloud Computing, Volume 5, Issue 3, 
pp. 12-26

http://www.infosys.tuwien.ac.at/Staff/sd/papers/Zeitschriftenartikel_2018_S_Dustdar_The_next.pdf


IoT-driven ecosystems



IoT/Data/Application Orchestration



Osmotic movement of MELs in Clouds, Edge, Things

Legend:
MEL...Micro Element



IoT Data Sources
1. Representation: Structure and represent the data to facilitate multiple modalities, 

exploiting the complementarity and redundancy of different data sources. 

2. Translation: Interpret data from one modality to another, i.e., provide a translator that 
allows the modalities to interact with each other for enabling data exchange. 

3. Alignment: Identify the relation among modalities. This requires identifying links 
between different types of data. 

4. Fusion: Fuse information from different modalities (e.g., to predict). 

5. Co-learning: Transfer knowledge among modalities. This explores the field of how the 
knowledge of a modality can help or enhance a computational model trained on a 
different modality. 



IoT Mircoelements (MELs)  

1. MicroServices (MS), which implement specific functionalities and can be deployed and migrated across 
different virtualized and/or containerized infrastructures (e.g., Docker) available across Cloud, Edge, and 
Things layers 

2. MicroData (MD), encodes the contextual information about (a) the sensors, actuators, edge devices, and 
cloud resources it needs to collect data from or send data to, (b) the specific type of data (e.g., temperature, 
vibration, pollution, pH, humidity) it needs to process, and (c) other data manipulation operations such as 
where to store data, where to forward data, and where to store results 

3. MicroComputing (MC), executing specific types of computational tasks (machine learning, aggregation, 
statistical analysis, error checking, and format translation) based on a mix of historic and real-time MD data 
in heterogeneous formats. These MCs could be realized using a variety of data storage and analytics 
programming models (SQL, NoSQL, stream processing, batch processing, etc.)

4. MicroActuator (MA), implementing programming interfaces (e.g., for sending commands) with actuator 
devices for changing or controlling object states in the IoT environment



IoT Programming Patterns needed

1. Decomposing IoT data analysis activities into fine-grained activities (e.g., statistics, 
clustering, classification, anomaly detection, accumulation, filtering), each of which 
may impose different planning and run-time orchestration requirements; 

2. Identifying and integrating real-time data from IoT devices and historical IoT data 
distributed across Cloud and Edge resources; 

3. Identifying data and control flow dependencies between data analysis activities 
focusing on coordination and data flow variables, as well as the handling of dynamic 
system updates and re-configuration; 

4. Defining and tagging each data analysis activity with runtime deployment constraints
(QoS, security and privacy). 



Fleet Management System
o Manages fleets of electric vehicles world-

wide (e.g., on golf courses)

Motivating Case Studies
Building Management System

• Manages building facilities, e.g., HVAC 
systems, elevators and emergency alarms

IoT Gateways Cloud



Motivation

• Lack of systematic support and tools for 
developing, deploying, and operating IoT
systems (Cloud, Fog, and Edge)

• Today IoT systems are vertically closed 
and tightly coupled

• Hard to develop and maintain applications

• Difficult to operate and reuse existing 
infrastructure



Programming Model for IoT Systems



Motivation 

Requirements:
• Application: Should be generic 

(independent of underlying devices)
• Runtime: Dealing with scalability and 

elasticity concerns
• Developer: Software engineering 

expertise 

Requirements:
• Application: Custom configuration and 

behavior of Sens./Act.
• Runtime: Dealing with constrained 

resources
• Developer: Domain expert knowledge 

Fleet energy usage management
Process energy consumption - Detect energy fault

- Notify manager
- Stop vehicle

Actuation steps to stop vehicle



Approach

Control
Tasks

Monitor
Tasks

Intents

E.g., sequence of actuation steps to stop a vehicle

• Packaged into domain-specific 
libraries (e.g., vehicles management)

Task - Encapsulates domain-
dependent controls or 
analytics 

• Used by developers to remotely 
invoke Tasks

• Independent of concrete Task 
implementation

Stefan Nastic, Sanjin Sehic, Michael Vögler, Hong-Linh Truong, and Schahram Dustdar. PatRICIA - A Novel 

Programming Model for IoT Applications on Cloud Platforms. SOCA 2013. Hawaii, USA.

Intent - High-level 
representation of Tasks on 
Cloud platforms
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Control
Tasks

Monitor
Tasks

Intents



Intent-based Programming Model

o Trade expressiveness for more flexible and easier application 
development

Intent Structure

• Passive data structure which 
declaratively describes intended action, 
e.g., stop vehicle

• Generic applications (What needs to be 
done instead how to do it)

• Enable developing loosely coupled 
applications 



Some final reflections



Beyond Turing

• Can a machine-only system really 
be considered “intelligent”?

• Going beyond Turing Test... (Alexa, 
Siri, Cortana)

• Why not utilize societal intelligence? 
... and not try to match the 
intelligence of a single human 
individual?

• Integrate AI, IoT, and human 
collectives into processes!
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