
13 November 2018, ICSOC 2018, Honghzou, China

Schahram Dustdar

Distributed Systems Group

TU Wien

dsg.tuwien.ac.at

On Research Challenges in
IoT Systems Engineering

Network Neutrality (NN)

All traffic on the Internet must be treated equally.

Network Neutrality is gone…

Understanding the context

What about NN and IoT?

Dustdar S. and Duarte, E.. (2018) Network Neutrality and its impact on Innovation, IEEE Internet Computing,

Nov/Dec 2018

eHealth &
Smart Health
networks

Game Machine

Telephone

PC

DVD

Audio

TV

STBDVC

Smart
Homes

Smart eGovernments &
eAdministrationsSmart Energy

Networks

Smart Evolution – People, Services, and Things

Elastic Systems & Processes

Smart Transport
Networks

Autonomic
Nervous
System

Design Aspects
• Divide & Conquer
• Complexity,

Coherence &
Entropy

Service Engineering Design Strategy

Definition of DIVIDE AND CONQUER

to make a group of people disagree and
fight with one another so that they will not
join together against one. His military
strategy is to divide and conquer.

Smart City Example

14

Air
Sensor

Fire
Sensor

Hear
Sens.

Smart
Containers

Water
Sensor

Humidity
Sensor

Trash
Sensor

Access
Control

Smart
Meter

Dashboard
Camera

Loca-
lisation

Parking
Space Sens.

Video
Surveillance

Traffic
Density

Things

Training
Assistant

Goods
Tracking

Water
Management

Watering
Service

Garbage
Collection

Automated
Parking

Product
Localisation

Crowd
Management

Traffic
Control

Person
Detection

Smart Facility
Management

Desaster
Management

Software

Training
History

Container
Utilization

Water
Consumption

Watering
Needs

Recycling
Rates

Parking
Utilization

Product
Information

Crowd
Movement

Traffic
Density

Facility
Statistics

Desaster
Information

Data

Crime
Surveillance

People

Marine Ecosystem: http://www.xbordercurrents.co.uk/wildlife/marine-ecosystem-2

Ecosystems: People, Systems, and Things
Complex system with networked
dependencies and intrinsic
adaptive behavior – has:

1. Robustness & Resilience
mechanisms: achieving stability
in the presence of disruption

2. Measures of health: diversity,
population trends, other key
indicators

3. Built-in coherence

4. Entropy-resistence

Ecosystems for IoT Systems

Perspectives on the IoT: Edge, Cloud, Internet

Cloud-centric perspective
Assumptions
• Cloud provides core services; Edge provides local proxies for the Cloud (offloading parts of the cloud’s

workload)

Edge Computers
• play supportive role for the IoT services and applications

• Cloud computing-based IoT solutions use cloud servers for various purposes including massive computation,
data storage, communication between IoT systems, and security/privacy

Missing

• In the network architecture, the cloud is also located at the network edge, not surrounded by the edge

• Computers at the edge do not always have to depend on the cloud; they can operate autonomously and
collaborate with one another directly without the help of the cloud

Internet-centric perspective

Assumptions
• Internet is center of IoT architecture; Edge devices are gateways to the Internet (not the Cloud)

• Each LAN can be organized around edge devices autonomously

• Local devices do not depend on Cloud

Therefore
• Things belong to partitioned subsystems and LANs rather than to a centralized system directly

• The Cloud is connected to the Internet via the edge of the network

• Remote IoT systems can be connected directly via the Internet. Communications does not have to go via the
Cloud

• The Edge can connect things to the Internet and disconnect traffic outside the LAN to protect things ->
IoT system must be able to act autonomously

Edge perspectives

Cloud-IoT vs. Edge/Cloud hybrid IoT

Vertical vs. Horizontal Edge Architecture

Ecosystem “Society 5.0“ (Japan)

Toward realization of the new economy and society, Keidanren (Japan Business Federation), April 2016

Linear History? Ancient “Computers“

Stonehenge: A Neolithic

Computer

Nature 202, 1258 - 1261

(27 June 1964);

doi:10.1038/2021258a0

Adam‘s Calender,

Michael Tellinger

Collective mess....

“The scientists of today think
deeply instead of clearly.

One must be sane to think
clearly,
but one can think deeply and
be quite insane.”

Nikola Tesla

https://www.goodreads.com/author/show/278.Nikola_Tesla

Marie Curie

"You cannot hope to build a better world
without improving the individuals.

To that end each of us must work for his own
improvement, and at the same time share a
general responsibility for all humanity,

our particular duty being to aid those to whom
we think we can be most useful."

28

Assumptions, Models, and Abstractions

• Co-evolution of Science & Technologies

• Smart Cities as models of ecosystems: -> People, Things, and Systems

• Models as abstractions are useful (Platonic Forms)

• We lack a model for such an ecosystem

• From automation to creativity support

• Consciousness and creativity support -> lead to new (meta) models and
understanding of technologies and science -> Architecture of Values

Layers of Paradigms

• Not reductionist

• We have to create the abstractions and models we
want based on our understanding of human and
societal needs

• Ecosystems = Architecture, Structure + Dynamics

• New Paradigms: (1) Elastic Computing,
(2) Social Compute Units, (3) Osmotic Computing

• Emergent properties on higher levels with own
properties

stretch when a force stresses them

shrink when the stress is removed

(Physics) The property of returning to an initial form or state
following deformation

Paradigm 1: Elasticity (Resilience)

e.g., acquire new resources, reduce quality

e.g., release resources, increase quality

Elastic Computing > Scalability

Resource elasticity
Software / human-based
computing elements,
multiple clouds

Quality elasticity
Non-functional parameters e.g.,
performance, quality of data,
service availability, human
trust

Costs & Benefit
elasticity
rewards, incentives

Elasticity

Dustdar S., Guo Y.,

Satzger B., Truong H.

(2012) Principles of Elastic

Processes, IEEE Internet

Computing, Volume:

16, Issue: 6, Nov.-Dec.

2012

http://www.infosys.tuwien.ac.at/Staff/sd/papers/Zeitschriftenartikel PrinciplesOfElasticProcesses SD.pdf
https://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=6355499

Specifying and controling elasticity

Basic primitives

Dustdar, S. et al.: Programming

Directives for Elastic

Computing. IEEE Internet

Computing 16(6): 72-77 (2012)

SYBL (Simple Yet Beautiful Language) for
specifying elasticity requirements

SYBL-supported requirement levels

Cloud Service Level

Service Topology Level

Service Unit Level

Relationship Level

Programming/Code Level

Current SYBL implementation

in Java using Java annotations
@SYBLAnnotation(monitoring=„“,constraints=„“,strategies=„“)

in XML
<ProgrammingDirective><Constraints><Constraint

name=c1>...</Constraint></Constraints>...</ProgrammingDirective
>

as TOSCA Policies
<tosca:ServiceTemplate name="PilotCloudService"> <tosca:Policy

name="St1" policyType="SYBLStrategy"> St1:STRATEGY
minimize(Cost) WHEN high(overallQuality) </tosca:Policy>...

Specifying and controling elasticity of human-
based services

What if we need to

“invoke“ humans?

#predictive maintanance analyzing chiller measurement
#SYBL.ServiceUnitLevel
Mon1 MONITORING accuracy = Quality.Accuracy
Cons1 CONSTRAINT accuracy < 0.7
Str1 STRATEGY CASE Violated(Cons1):
Notify(Incident.DEFAULT, ServiceUnitType.HBS)

High level elasticity control
#SYBL.CloudServiceLevel
Cons1: CONSTRAINT responseTime < 5 ms
Cons2: CONSTRAINT responseTime < 10 ms
WHEN nbOfUsers > 10000
Str1: STRATEGY CASE fulfilled(Cons1) OR
fulfilled(Cons2): minimize(cost)

#SYBL.ServiceUnitLevel
Str2: STRATEGY CASE ioCost < 3 Euro :
maximize(dataFreshness)

#SYBL.CodeRegionLevel
Cons4: CONSTRAINT dataAccuracy>90% AND
cost<4 Euro

Georgiana Copil, Daniel Moldovan, Hong-Linh Truong, Schahram Dustdar, "SYBL: an Extensible Language for Controlling Elasticity in Cloud
Applications", 13th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid), May 14-16, 2013, Delft, Netherlands

Copil G., Moldovan D., Truong H.-L., Dustdar S. (2016). rSYBL: a Framework for Specifying and Controlling Cloud Services Elasticity. ACM
Transactions on Internet Technology

Elasticity Model for Cloud Services
Moldovan D., G. Copil,Truong H.-L., Dustdar S. (2013). MELA:

Monitoring and Analyzing Elasticity of Cloud Service. CloudCom

2013

Elasticity space functions: to determine if a service
unit/service is in the “elasticity behavior”

Elasticity Pathway functions: to characterize the
elasticity behavior from a general/particular view

Elasticity Space

Paradigm 2: Social Compute Units (SCUs)

Dustdar S., Bhattacharya K.
(2011). The Social Compute Unit, IEEE
Internet Computing, Volume 15, Issue
3; pp. 64 - 69.

Fernández P., Truong H.-L., Dustdar S.,
Ruiz-Cortés A. (2015). Programming
Elasticity and Commitment in
Dynamic Processes. IEEE Internet
Computing, Volume 19, Number 2,
pp. 68 - 74

http://www.infosys.tuwien.ac.at/Staff/sd/papers/Zeitschriftenartikel SD The Social Compute Unit.pdf
http://www.infosys.tuwien.ac.at/Staff/sd/papers/Zeitschriftenartikel L. Truong Programming Elasticity.pdf

Elastic SCU provisioning (Paradigms 1 and 2 together)

Elastic profile
SCU (pre-)runtime/static formation

Cloud APIs

Muhammad Z.C. Candra, Hong-Linh Truong, and Schahram

Dustdar, Provisioning Quality-aware Social Compute Units in

the Cloud, ICSOC 2013.

Algorithms
 Ant Colony

Optimization
variants

 FCFS
 Greedy

SCU extension/reduction
 Task reassignment

based on trust, cost,
availability

Mirela Riveni, Hong-Linh Truong, and Schahram

Dustdar, On the Elasticity of Social Compute Units,

CAISE 2014

Paradigm 3: Osmotic Computing

 Dynamic management of
(micro)services across cloud and
edge datacenters
 deployment, networking, and

security, …

 providing reliable IoT support with
specified levels of QoS.

 In chemistry, “osmosis” represents the
seamless diffusion of molecules from a
higher to a lower concentration solution.

Villari M., Fazio M., Dustdar S., Rana O., Ranjan R. (2016). Osmotic

Computing: A New Paradigm for Edge/Cloud Integration. IEEE Cloud

Computing, Volume 3, Issue 6, pp. 76-83

http://www.infosys.tuwien.ac.at/Staff/sd/papers/Zeitschriftenartikel_2016_SD_ Osmotic.pdf

IoT & Data Science – Research Challenges

Ranjan R., Rana O., Nepal S., Yousif M.,
James P., Wen Z., Barr S., Watson P.,
Jayaraman P. P., Georgakopoulos D., Villari
M., Fazio M., Garg S., Buyya R., Wang L.,
Zomaya A. Y., Dustdar S. (2018).
The Next Grand Challenges: Integrating
the Internet of Things and Data Science,
IEEE Cloud Computing, Volume 5, Issue 3,
pp. 12-26

http://www.infosys.tuwien.ac.at/Staff/sd/papers/Zeitschriftenartikel_2018_S_Dustdar_The_next.pdf

IoT-driven ecosystems

IoT/Data/Application Orchestration

Osmotic movement of MELs in Clouds, Edge, Things

Legend:
MEL...Micro Element

IoT Data Sources
1. Representation: Structure and represent the data to facilitate multiple modalities,

exploiting the complementarity and redundancy of different data sources.

2. Translation: Interpret data from one modality to another, i.e., provide a translator that
allows the modalities to interact with each other for enabling data exchange.

3. Alignment: Identify the relation among modalities. This requires identifying links
between different types of data.

4. Fusion: Fuse information from different modalities (e.g., to predict).

5. Co-learning: Transfer knowledge among modalities. This explores the field of how the
knowledge of a modality can help or enhance a computational model trained on a
different modality.

IoT Mircoelements (MELs)

1. MicroServices (MS), which implement specific functionalities and can be deployed and migrated across
different virtualized and/or containerized infrastructures (e.g., Docker) available across Cloud, Edge, and
Things layers

2. MicroData (MD), encodes the contextual information about (a) the sensors, actuators, edge devices, and
cloud resources it needs to collect data from or send data to, (b) the specific type of data (e.g., temperature,
vibration, pollution, pH, humidity) it needs to process, and (c) other data manipulation operations such as
where to store data, where to forward data, and where to store results

3. MicroComputing (MC), executing specific types of computational tasks (machine learning, aggregation,
statistical analysis, error checking, and format translation) based on a mix of historic and real-time MD data
in heterogeneous formats. These MCs could be realized using a variety of data storage and analytics
programming models (SQL, NoSQL, stream processing, batch processing, etc.)

4. MicroActuator (MA), implementing programming interfaces (e.g., for sending commands) with actuator
devices for changing or controlling object states in the IoT environment

IoT Programming Patterns needed

1. Decomposing IoT data analysis activities into fine-grained activities (e.g., statistics,
clustering, classification, anomaly detection, accumulation, filtering), each of which
may impose different planning and run-time orchestration requirements;

2. Identifying and integrating real-time data from IoT devices and historical IoT data
distributed across Cloud and Edge resources;

3. Identifying data and control flow dependencies between data analysis activities
focusing on coordination and data flow variables, as well as the handling of dynamic
system updates and re-configuration;

4. Defining and tagging each data analysis activity with runtime deployment constraints
(QoS, security and privacy).

Fleet Management System
o Manages fleets of electric vehicles world-

wide (e.g., on golf courses)

Motivating Case Studies
Building Management System

• Manages building facilities, e.g., HVAC
systems, elevators and emergency alarms

IoT Gateways Cloud

Motivation

• Lack of systematic support and tools for
developing, deploying, and operating IoT
systems (Cloud, Fog, and Edge)

• Today IoT systems are vertically closed
and tightly coupled

• Hard to develop and maintain applications

• Difficult to operate and reuse existing
infrastructure

Programming Model for IoT Systems

Motivation

Requirements:
• Application: Should be generic

(independent of underlying devices)
• Runtime: Dealing with scalability and

elasticity concerns
• Developer: Software engineering

expertise

Requirements:
• Application: Custom configuration and

behavior of Sens./Act.
• Runtime: Dealing with constrained

resources
• Developer: Domain expert knowledge

Fleet energy usage management
Process energy consumption - Detect energy fault

- Notify manager
- Stop vehicle

Actuation steps to stop vehicle

Approach

Control
Tasks

Monitor
Tasks

Intents

E.g., sequence of actuation steps to stop a vehicle

• Packaged into domain-specific
libraries (e.g., vehicles management)

Task - Encapsulates domain-
dependent controls or
analytics

• Used by developers to remotely
invoke Tasks

• Independent of concrete Task
implementation

Stefan Nastic, Sanjin Sehic, Michael Vögler, Hong-Linh Truong, and Schahram Dustdar. PatRICIA - A Novel

Programming Model for IoT Applications on Cloud Platforms. SOCA 2013. Hawaii, USA.

Intent - High-level
representation of Tasks on
Cloud platforms

53

Control
Tasks

Monitor
Tasks

Intents

Intent-based Programming Model

o Trade expressiveness for more flexible and easier application
development

Intent Structure

• Passive data structure which
declaratively describes intended action,
e.g., stop vehicle

• Generic applications (What needs to be
done instead how to do it)

• Enable developing loosely coupled
applications

Some final reflections

Beyond Turing

• Can a machine-only system really
be considered “intelligent”?

• Going beyond Turing Test... (Alexa,
Siri, Cortana)

• Why not utilize societal intelligence?
... and not try to match the
intelligence of a single human
individual?

• Integrate AI, IoT, and human
collectives into processes!

Thanks for your attention
Prof. Schahram Dustdar

IEEE TCSVC Outstanding Leadership
Award in Services Computing
Member of Academia Europaea
IBM Faculty award
ACM Distinguished Scientist
IEEE Fellow

Distributed Systems Group
TU Wien

dsg.tuwien.ac.at

